OpenGL ES 2.0 Programming Guide

In the OpenGL® ES 2.0 Programming Guide, three leading authorities on the Open GL ES 2.0 interface—including the specification’s editor—provide start-to-finish guidance for maximizing the interface’s value in a wide range of high-performance applications. The authors cover the entire API, including Khronos-ratified extensions. Using detailed C-based code examples, they demonstrate how to set up and program every aspect of the graphics pipeline. You’ll move from introductory techniques all the way to advanced per-pixel lighting, particle systems, and performance optimization.

Coverage includes:

  • Shaders in depth: creating shader objects, compiling shaders, checking for compile errors, attaching shader objects to program objects, and linking final program objects
  • The OpenGL ES Shading Language: variables, types, constructors, structures, arrays, attributes, uniforms, varyings, precision qualifiers, and invariance
  • Inputting geometry into the graphics pipeline, and assembling geometry into primitives
  • Vertex shaders, their special variables, and their use in per-vertex lighting, skinning, and other applications
  • Using fragment shaders—including examples of multitexturing, fog, alpha test, and user clip planes
  • Fragment operations: scissor test, stencil test, depth test, multisampling, blending, and dithering
  • Advanced rendering: per-pixel lighting with normal maps, environment mapping, particle systems, image post-processing, and projective texturing
  • Real-world programming challenges: platform diversity, C++ portability, OpenKODE, and platform-specific shader binaries